Measuring and modeling bipartite graphs with community structure
نویسندگان
چکیده
Network science is a powerful tool for analyzing complex systems in fields ranging from sociology to engineering to biology. This paper is focused on generative models of bipartite graphs, also known as twoway graphs. We propose two generative models that can be easily tuned to reproduce the characteristics of real-world networks, not just qualitatively, but quantitatively. The measurements we consider are the degree distributions and the bipartite clustering coefficient, which we refer to as the metamorphosis coefficient. We define edge, node, and degreewise metamorphosis coefficients, enabling a more detailed understand of the bipartite community structure. Our proposed bipartite Chung-Lu model is able to reproduce real-world degree distributions, and our proposed bipartite “BTER” model reproduces both the degree distributions as well as the degreewise metamorphosis coefficients. We demonstrate the effectiveness of these models on several real-world data sets.
منابع مشابه
Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملFinding Community Base on Web Graph Clustering
Search Pointers organize the main part of the application on the Internet. However, because of Information management hardware, high volume of data and word similarities in different fields the most answers to the user s’ questions aren`t correct. So the web graph clustering and cluster placement in corresponding answers helps user to achieve his or her intended results. Community (web communit...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملThe p-median and p-center Problems on Bipartite Graphs
Let $G$ be a bipartite graph. In this paper we consider the two kind of location problems namely $p$-center and $p$-median problems on bipartite graphs. The $p$-center and $p$-median problems asks to find a subset of vertices of cardinality $p$, so that respectively the maximum and sum of the distances from this set to all other vertices in $G$ is minimized. For each case we present some proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Complex Networks
دوره 5 شماره
صفحات -
تاریخ انتشار 2017